A PEGylated Bilirubin Nanomedicine for Anticancer and Anti-inflammation Therapy

Sangyong Jon, Ph.D.

Bio-Nanomedicine Lab Department of Biological Sciences Korea Advanced Institute of Science and Technology (KAIST)

Bilirubin? A Final Metabolite of Heme

yellow, bile pigment (~1 mg/dL blood)

http://www.benbest.com/nutrceut/AntiOxidants.html

Bilirubin as a Bad Guy

Eyes with Jaundice (liver diseases?)

Neonatal jaundice

Jaundice itself is not a disease in adults, but rather a sign of certain pathological conditions!

Bilirubin: Water-insoluble -> Jaundice

glucuronyltransferase

$$\Rightarrow$$

in the liver

More water soluble 'Conjugated' Bilirubin

'Unconjugated' Bilirubin (BR)

Hydrophobic, Water insoluble! (yellow colored pigment)

Deposition in various tissues (skin, whites of the eyes (sclera), etc)

Eyes with Jaundice

Display 'Jaundice' signature

Epidemiological Study (역학조사) on Bilirubin

• In 1929, Philip Hench, a rheumatologist, made a dramatic observation, correlating relief of incurable symptoms of rheumatoid arthritis with the onset of jaundice.

Gilbert syndrome and Ischemic heart disease: a protective effect of elevated bilirubin

Atherosclerosis (2002) Vol. 160:449-456.

Inverse Relationship between serum bilirubin and atherosclerosis in men

Exp Biol Med. (2003) Vol. 228(5):568-571.

Serum bilirubin and inverse correlation with colorectal cancer

Hepatology (2004) Vol.40: 827-835.

Bilirubin as a Protective Factor for Rheumatoid arthritis

J Clin Med Res (2010) Vol.2(6):256-260.

Relatively higher levels of bilirubin were associated with a lower risk of respiratory disease and allcause mortality JAMA. (2011) Vol. 305(7):691-697.

Bilirubin: A Potent Anti-oxidant in Vivo

Science 27 February 1987: Vol. 235 no. 4792 pp. 1043-1046 DOI: 10.1126/science.3029864

Bilirubin is an antioxidant of possible physiological importance

R Stocker, Y Yamamoto, AF McDonagh, AN Glazer, BN Ames

NAS

Bilirubin and glutathione have complementary antioxidant and cytoprotective roles

Thomas W. Sedlak^{a,b}, Masoumeh Saleh^b, Daniel S. Higginson^b, Bindu D. Paul^b, Krishna R. Juluri^b, and Solomon H. Snyder^{a,b,c,1}

^aDepartment of Psychiatry and Behavioral Sciences, ^bThe Solomon H. Snyder Department of Neuroscience, and ^cDepartment of Pharmacology ar Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205

'Double-edged Sword'

Bilirubin -> PEGylated Bilirubin

Bilirubin

Hydrophobic, Water insoluble!

PEG₂₀₀₀-Bilirubin

Amphiphillic, Water miscible!

→ Little chance to be remained or accumulated in the body!

KAIST

Bilirubin Nanoparticles (BRNPs)

ROS & Inflammatory Diseases

Bilirubin Nanoparticles: Universal antiinflammatory therapeutics without immune suppression?

1) Inflammatory Bowel Disease: Acute colitis model

(Angew Chem Int Ed., 2016)

2) Hepatic ischemia-reperfusion injury:

Liver transplantation model (Biomaterials, 2017)

3) Islet xeno-transplantation (Biomaterials, 2017)

4) Acute asthma (Biomaterials, 2017)

BRNPs: ROS/Light-responsive Drug Delivery Carriers as well as a Medicine!

Phototherapy for Neonatal Jaundice

Bilirubin Metabolism During Phototherapy

N ENGLJ MED 358;9 WWW.NEJM.ORG FEBRUARY 28, 2008

ΚΔΙΣΤ

Light-triggered Disruption of BRNPs

Drug Loading Capability of BRNPs

Light-Induced Disruption of BRNPs

□ Photo irradiation for 1 min at 450 nm (10 mW/cm²)

□ Light-induced drug release profile

Light-Induced Disruption of BRNPs

Photo irradiation for 1 min at 650 nm

(90 mW/cm²)

□ Light-induced drug release profile

Cancer Targeting Ability of BRNPs

Xenograft model : Human lung adenocarcinoma epithelial cell line (A549)

in Balb/c nude mice

Dose: BRNPs (600 µg) in PBS, I.V injection

Control group: PBS

ΚΔΙΣΤ

Antitumor Efficacy of BRNPs in Vivo

Mouse : Balb/c nude mouse 7 weeks Tumor : A549 Human lung carcinoma cell line (1*10^6) Group : Control group (PBS), DOX (2mg/kg), BRNPs (20mg/kg), DOX(2mg/kg)/BRNPs (20mg/kg), DOX(2mg/kg)/BRNPs (20mg/kg) with laser [Laser : 650nm laser (5min, 200 mW/cm²) 30 min after injection of Dox loaded BRNPs]

Dosing schedule : 0, 3, 6, 9,12 days

Tumor microenvironment & nanomedicine

Adapted from Overchuk M. and Zheng G., Biomaterials, 2018.

Tumor microenvironment & ROS

ROS are overproduced in the TME!

Adapted from Zhang Y. et al., Oxidative Medicine and Cellular Logevity, 2016.

Bilirubin: A Redox Active Compound

ROS-triggered Disruption of BRNPs

ROS-triggered Disruption of BRNPs

□ Upon oxidation by peroxy radicals

The size of BRNPs drastically decreased!
Solution color of BRNPs became changed

bt-BRNPs as a TME ROS-targeting nanomedicine

Preparation of ROS-responsive bt-BRNPs

Cell targeting and drug release of Dox@bt-BRNPs

DAPI Dox

Tumor targeting of Cyp@bt-BRNPs

Antitumor Efficacy of BRNPs in Vivo

Adv. Science, 2018.